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Abstract: Density Functional Theory (DFT) is the standard formalism to study the electronic
structure of matter at the atomic scale. In Kohn-Sham DFT simulations, the balance between
accuracy and computational cost depends on the choice of exchange and correlation functional, which
only exists in approximate form. Here we propose a framework to create density functionals using
supervised machine learning, termed NeuralXC. These machine-learned functionals are designed to
lift the accuracy of baseline functionals towards that are provided by more accurate methods while
maintaining their efficiency. We show that the functionals learn a meaningful representation of the
physical information contained in the training data, making them transferable across systems. A
NeuralXC functional optimized for water outperforms other methods characterizing bond breaking
and excels when comparing against experimental results. This work demonstrates that NeuralXC
is a first step towards the design of a universal, highly accurate functional valid for both molecules
and solids.

INTRODUCTION

For many years, density functional theory (DFT) has
served as the standard tool to study the electronic struc-
ture of materials and condensed systems. Striking an op-
timal balance between accuracy and computational cost
[1], DFT makes a first-principles description of complex
and large systems possible that is otherwise out of reach
for more accurate ab initio approaches. To achieve this
balance, DFT is mapped onto a mean-field single electron
description within the Kohn-Sham (KS)[2] approach. In
KS-DFT, all the complexities of the many-body electron-
electron interaction are reduced within a functional of
the density. This functional consists of an exchange (X)
and a correlation (C) part, the former capturing effects
from Pauli-exchange, and the latter approximating corre-
lations of electrons within the many-body wavefunction.

There is a well-defined roadmap to creating more ac-
curate XC functional formulations, the so-called Jacob’s
ladder of John Perdew [3, 4], with each rung represent-
ing increasing levels of complexity and decreasing levels
of approximation to the exact XC functional. The con-
struction of functionals following this map allows for the
incorporation of the added complexities in a controlled
and physically motivated way, imposing the necessary
constraints that these formulations should satisfy to cor-
rectly and universally describe the underlying physics.

A completely different approach to obtaining more ac-
curate functionals is to replace the physically motivated
path by a data-driven search. Functionals created follow-
ing this approach are often referred to as semiempirical
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[5], and versions of these functionals many different levels
of approximations. In recent years, unprecedented com-
putational capacity has made the calculation of physi-
cal properties of molecules and solids with ab initio fully
correlated accuracy possible. Such developments have
allowed researchers to take the semiempirical approach
to the extreme, inaugurating an era of machine learn-
ing (ML) methods in density functional development.
This path produced the recent ωB97M-V [6], a range-
separated hybrid meta-GGA with non-local correlation.
It was designed using a combinatorial technique taking
Becke’s B97 family of semiempirical functionals [7], aug-
mented with hybrid and non-local correlation compo-
nents as primary ingredients. The fit was done using
a database of accurate single-point calculations on a few
thousand molecules. Similarly, using a simple mathemat-
ical formulation coined data projection on the parameter
subspace (DPPS), Fritz et al. [8] showed that it was
possible to optimize a GGA functional with non-local
correlations for liquid water. This functional was fitted
to highly accurate data from coupled-cluster calculations
that was also used to optimize the water force field MB-
POL[9–11].

While these latter functionals can already be consid-
ered members of the machine learning (ML) family, other
modern ML approaches make use of algorithms such as
artificial neural networks (ANN), kernel ridge regression
(KRR) and gaussian process regression (GPR). Grifasi
et al. [12] have shown that the electron density for small
hydrocarbons can be directly predicted from structural
information and Fabrizio et al. [13] have been able to ex-
tend this work to non-covalently bonded systems. Chan-
drasekaran et al. [14] were able to achieve the same goal
for solid-state systems by introducing a grid-based struc-
ture to electron density mapping using an ANN. Both ap-
proaches show great promise to significantly speed up ab-
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initio calculations as they completely circumvent solving
the cubic-scaling self-consistent field (SCF) equations.
Other works, including the one presented here, have at-
tempted to parametrize an xc-functional with ML, and
we discuss related methods [15–17] in detail, in Supple-
mentary Note 1.

In this manuscript, we propose a pathway to construct
fully machine-learned functionals that depend explicitly
on the electronic density and implicitly on the atomic
positions and are built on top of physically motivated
functionals in a ∆-learning type approach. These func-
tionals are created for a specific data-set and hence are
not universal. They follow the philosophy of other op-
timized density functionals [8], which opt to prioritize
the system-dependent accuracy over their transferability.
We will show that using our proposed method, it is pos-
sible to create specialized functionals that perform close
to coupled-cluster level of accuracy when used in sys-
tems with sufficient similarity to the training data. Func-
tionals exhibit promising transferability from gas to con-
densed phase and from small to larger molecules within
the same type of chemical bonding. Moreover, far out-
side their training domain, these functionals are shown
not to decrease the accuracy of their baseline method.

Our method is an evolution of our recent work [18],
in which we developed machine-learned correcting func-
tionals (MLCF) to correct energies and forces by learn-
ing from the electron density. Building on it, in this
manuscript, we show that it is possible to take the func-
tional derivative of MLCFs thus creating semilocal ML
KS density functionals that can be used in self-consistent
calculations. We call this overall method NeuralXC. We
show that these functionals encode meaningful chemical
information that extends beyond the training set, hence
making the functionals transferable. Despite not using
the density as a target in the training process, we dis-
cuss how the resulting self-consistent densities compare
to the exact (at the coupled cluster with singles, dou-
bles and perturbative triples (CCSD(T)) level) densities.
Except for some specific moments of the density distri-
bution, we do not observe a major improvement. We dis-
cuss approaches to overcome this limitation, which will
be further developed in future work.

RESULTS

Density representation

The charge density is represented following our earlier
work [18] by projecting it onto a set of atom-centered
basis functions. Throughout this work the inner cutoff
radius was set to zero, resulting in radial basis functions
defined as

ζ̃n(r) =

{
1
N r

2(ro − r)n+2 for r < ro
0 else

(1)

with an outer cutoff radius ro and a normalization fac-
tor N . The full basis is then given as ψnlm(r) =
Ylm(θ, φ)ζn(r), where Ylm(θ, φ) are real spherical har-
monics and ζn the orthogonalized radial basis functions
(for details see Ref. 18). The basis set parameters cho-
sen for every model used in this work are summarized in
Supplementary Table I.

The descriptors cInlm for atom I of species αI at posi-
tion RI are obtained by projecting the electron density
ρ onto the corresponding basis functions ψαI

nlm.

cInlm ≡ cnlm[ρ(r),RI , αI ] =

∫
r

ρ(r)ψαI

nlm(r−RI). (2)

We found it beneficial for certain models to use the modi-
fied electron density δρ instead of ρ in Equation (2). This
δρ is defined as the difference between the full electron
density and atomic electron density ρatm the latter being
constructed by filling the basis functions with appropri-
ate valence charges (see Ref. 19 for details):

δρ(r) = ρ(r)− ρatm(r) (3)

Using this neutral density has the advantage that it
is generally smoother than ρ, as peaks around the ion
cores cancel out. Moreover, δρ always integrates to
zero, regardless of the atomic species involved, suggesting
that models trained on it will show better transferability
across chemical environments. We have used δρ in all
models introduced below except for the one trained on
water clusters. Here, cross-validation has determined ρ
to produce lower generalization errors (see Methods sec-
tion for details).

To avoid erroneous behavior during deployment, the
model must respect all physical symmetries. These sym-
metries include permutation of atoms of the same species,
rotations, and reflections. We opted to enforce these sym-
metries in two ways: permutational invariance is imposed
by the architecture of our neural network as discussed be-
low, whereas rotational invariance and invariance under
reflection is encoded in the features themselves.

Starting from our original descriptors cnlm, we can
obtain a rotationally invariant version by applying the
transformation

dnl =

l∑
m=−l

c2nlm. (4)

Machine-learned functional

As in previous work by the authors [18], the permuta-
tionally invariant Behler-Parrinello networks (BPN) [20]
were used to parametrize the energy functional. The net-
work maps the rotationally invariant descriptors dnl onto
the energy, which is represented as a sum of atomic con-
tributions to ensure permutation symmetry (Figure 1).
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FIG. 1. Implementation of NeuralXC. Starting from the electron density in real-space, obtained with a converged DFT
calculation (using the baseline functional Ebase), the projector maps this density to a set of descriptors cnlm. The symmetrizer
creates rotationally invariant versions of these descriptors dnl , which, after preprocessing (not depicted here), are passed
through a Behler-Parrinello type neural network architecture. By using the same network for descriptors of a given atomic
species, we ensure permutation invariance. Once the energy EML is obtained, its derivative can be backpropagated using the
chain rule to obtain the machine learned potential VML. VML is added back to the baseline potential Vbase = δEbase/δn(r), to
create the full VNXC(r), which can be used in subsequent self-consistent calculations.

The energy functional can therefore be written as

EML[ρ(r)] = EML(d[ρ(r)]) =
∑
I

εαI
(d[ρ(r),RI , αI ])

(5)
where εα are the outputs of the atomic networks, i.e. the
last layer inside the BPN before the global summation.
We have further used dI as a short-hand notation for the
collection of dnl over all allowed values for n and l.

The functional is built on top of a physically motivated,
non-ML baseline functional Ebase, which in this work was
chosen to be PBE [21]. Other choices for this baseline
functional are possible but will lead to a different trade-
off between accuracy and computational cost.

Once the energy functional has been fitted, the po-
tential VML, which is required to perform self-consistent
calculations, can be obtained through

VML[ρ(r)] =
δEML[ρ]

δρ(r)
. (6)

Here, δ
δρ(r) indicates the functional derivative and should

not be confused with the modified electron density in
Equation (3). Together with Equation (2) this translates

to

VML[ρ(r)] =
∑
β

∂EML

∂cβ

δcβ [ρ]

δρ(r)
=
∑
β

∂EML

∂cβ
ψβ(r). (7)

Here we have used β as a composite index, summarizing
the indices n, l andm as well as the atomic index I. Using
Equation (4), the partial derivatives can be computed as

∂EML

∂cβ
≡ ∂EML

∂cnlm
= 2

∂EML

∂dnl
cnlm. (8)

The resulting potential is therefore a linear combina-
tion of the original basis functions, with coefficients de-
pending on the derivatives of the machine learned en-
ergy functional with respect to its input features. These
derivatives are usually implemented in machine learn-
ing software packages and thus straightforward to ob-
tain. The machine learned potential and energy are both
added back to their baseline counterparts

ENXC[ρ] = Ebase[ρ] + EML[ρ] (9)

VNXC[ρ] = Vbase[ρ] + VML[ρ]. (10)

The combined functionals (NXC for NeuralXC) can in
principle be used in any DFT code.
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It is clear that the energy functional has an implicit de-
pendency on both, the atomic species αI and the nuclear
coordinates RI , setting it apart from traditional semilo-
cal functionals and some other machine learning ap-
proaches (see above). While the former dependency can
be lifted by simply using the same basis set and atomic
neural network for every atom regardless of species, the
latter is inherent to our method and cannot be circum-
vented. Previous work on machine-learned kinetic energy
functionals seems to indicate that encoding information
about the atomic positions in the features can be benefi-
cial [22].

At this point it should be highlighted that we do not
create a single functional, but a collection of function-
als. Each functional within this collection is trained on
and therefore closely linked to a specific dataset. These
datasets were chosen in order to test and illustrate cer-
tain properties of our proposed method. We named the
three datasets used in this work after the methods they
originate from: sGDML [23], MOB-ML [24] and MB-Pol
[9–11]. These sets contain total energies for a variety
of structures calculated at the coupled cluster with sin-
gles doubles and perturbative triples (CCSD(T)) level.
For further details, we refer the reader to Supplementary
Note 2.

Data-efficiency

Frequently, training data is scarce or, as in our case,
expensive to obtain. Due to the unfavorable scaling
of correlated quantum chemistry methods, the creation
of highly accurate datasets for medium to large-sized
molecules remains challenging to this day. We would,
therefore, like to design a machine learning method that
utilizes information contained in the available training
data to its full extent.

In order to test the data efficiency of NeuralXC we
trained a ML-functional for every molecule contained in
the sGDML dataset [23] while varying the amount of
training data.

Figure 2 and 3 show how the generalization error
changes as the size of the training set is increased. For
each training set size, a new model was trained using
the iterative approach described in the methods section,
and self-consistent calculations were run on the entire test
set. We used two different metrics for the evaluation: the
mean absolute error (MAE) and the maximum absolute
error. It can be seen that the MAE starts to saturate
at values of 0.01 eV or below at roughly 100 training
samples. Some improvement in the maximum error can
be observed as the training set size is increased further.
For malonaldehyde, at least 500 samples are required to
reach a max. error below chemical accuracy (1 kcal/mol
or 0.043 eV), all other molecules pass that threshold at
100 samples or fewer.
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FIG. 2. Mean average error. Error in energy prediction on
sGDML [25] test set with respect to training set size.
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FIG. 3. Maximum absolute error. Error in energy prediction
on sGDML [25] test set.

Transferability

Beyond being data-efficient, a useful machine learning
model generalizes well to unseen data. It is traditionally
assumed that both training and test set are independent
identically distributed samples of the same underlying
distribution. There is no reason to believe that a model
should extrapolate beyond the population on which it
was trained.

In an apparent contrast to this, we would like to create
a machine-learned functional that, after being exposed
to a small sample of molecules, generalizes to more com-
plex and larger systems. However, even though molecules
might differ significantly in their structural variables from
those contained in the training set, locally, their charge
distributions and, therefore, the input to the network can
still be similar as long as the underlying chemistry does
not change too much.

To test the transferability of our functional, we start
by comparing our method to that of Cheng et al. [26]
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Training set composition Ethane Propane Butane Isobutane
Method MAE Max. MAE Max. MAE Max. MAE Max.

PBE - 15 70 12 47 9.3 29 9.0 30
SCAN - 12 52 8.7 37 6.5 26 6.8 22

ωB97M-V - 8.5 41 6.3 26 4.8 18 4.5 18
MOB-ML[27] 100, 100, 50 - - - - 4.0 15 6.3 22

MOB-ML(mod.)[26] 20, 50, 0 - - - - 2.2 9.5 2.2 9.5
NeuralXC 20, 50, 0 2.0 9 1.8 7.7 1.7 5.8 1.5 4.3
NeuralXC 5, 10, 0 2.4 14 2.3 11 2.2 7.8 2.3 6.8

TABLE I. Transferability task on small alkanes. Mean absolute error (MAE) and maximum absolute error (Max.) per carbon
atom. The second column describes how many samples of propane, ethane and methane were contained in the training set.
Energy errors are given in meV.

1-body 2-body 3-body
Method RMSE MAE Max. RMSE MAE Max. RMSE MAE Max.

PBE 61 48 174 35 19 270 11 5.8 75
SCAN 9.2 7.7 22 44 24 297 13 7.7 49

ωB97M-V 7.4 5.0 40 16 11 65 11 6.9 60
NXC-W01 1.8 1.4 9.3 11 7.5 47 8.0 4.6 41

TABLE II. Generalization errors of NXC-W01. The errors in total energy are split up into their many-body contributions. For
monomers the 1-body errors are reported, for dimers the 2-body errors and for trimers the 3-body errors. All values are given
in meV.

using the MOB-ML dataset [24]. After being trained on
50 ethane and 20 propane geometries, the model’s capa-
bility of correctly reproducing relative energies for 100
n-butane and isobutane geometries is assessed. Figure
4a shows that these energies are predicted well beyond
chemical accuracy with MAEs of 6.6 meV and 6.1 meV
respectively and that in fact, we are more accurate than
Cheng et al.’s [26] state of the art method which achieves
MAEs of 8.7 meV and 8.8 meV. Even after the training
set size was decreased to 10 ethane and 5 propane struc-
tures, our model’s accuracy remains comparable to that
of Cheng et al.’s [26], as can be seen in Tab. I. Both spe-
cialized NeuralXC functionals as well as MOB-ML(mod.)
outperform SCAN and ωB97M-V (results obtained with
PySCF and a cc-pVDZ basis), two state of the art func-
tionals, in accuracy on the test data.

We would further like to assess how well our model
generalizes to other hybridizations of the carbon atom.
Figure 4b shows the prediction errors of the model used
on an augmented test set containing systems with double
and triple bonds. While we see a decline in performance
for these systems, the model still improves upon PBE. In
particular, errors in total energy are within 1.6 mHartree
or 44 meV of the reference values. The linear correla-
tion between prediction error and target value indicated
by their large R2 coefficients suggests the existence of
systematic errors. These errors are most likely due to
the model’s failure to treat physical effects deriving from
the sp and sp2 hybridizations of the carbon atom and
could be compensated by including relevant structures in
the training set. Indeed, we have found that by merely
adding three ethylene structures to the training set, the
R2 coefficients for ethylene, propene and acetylene de-
crease to 0.11, 0.01 and 0.30 respectively.

We have also tested how well our method generalizes
to elements other than those contained in the training
set. Ideally, we would like to create a general functional
that can be used across a wide variety of elements. To
do so, it is necessary to remove any information about
the atomic species in the model input. While we pre-
dict that an extensive and carefully curated training will
be necessary to achieve high accuracy across systems, we
have shown in Supplementary Note 5 and Supplemen-
tary Table II that a species-independent NeuralXC can
be trained on a set of O and C-containing molecules and
exhibit some improvement for molecules with S and Si.
In particular, the average error in bond lengths for a set
of small molecules decreased by approximately 42%.

Condensed systems and molecular dynamics

The previous test has focused on evaluating the trans-
ferability within single molecule gas-phase systems. A
different transferability measure should evaluate the ca-
pacity of a functional trained on small clusters to describe
condensed phase systems. We chose to test this by run-
ning Born-Oppenheimer molecular dynamics simulations
of liquid water–a challenging system for standard DFT
methods [8] – using the NeuralXC functional optimized
on the MB-pol dataset. [9–11].

The machine-learned functional was built as an addi-
tive correction to the PBE xc-functional and consisted
of a sum of two models. The first model was trained
to jointly reproduce the total energies of monomers and
dimers. The second model was then built on top of the
first to correct three-body energies in trimers. We coin
this new NeuralXC functional NXC-W01.
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FIG. 4. Residuals for transferability task on small alkanes.
Values on the x-axis, the target corrections, correspond to
the errors in total energy of PBE compared to the reference
method CCSD(T). Prediction errors on the y-axis are defined
as the errors of NeuralXC optimized on ethane and propane
with respect to CCSD(T). Shaded area corresponds to an
error of ±2mH, the threshold chosen by Cheng et al. [26].
Values in parentheses correspond to (Mean absolute error,
Maximum absolute error, R2 for the residuals).

Tab. II shows the NXC-W01 generalization error com-
pared to its baseline method on a test set consisting of
200 monomers, 500 dimers, and 250 trimers, obtained
in the same way as the training set. Rather than com-
paring total energies, we show errors for one, two, and
three-body energies as defined in Ref. [9] as otherwise
large contributions from one-body energies would always
dominate the comparison. Moreover, it has been shown
that the failure of common density functionals to repro-
duce the structure of liquid water can largely be accred-
ited to the incorrect treatment of low-order many body
energies. Conversely, a functional that reproduces these
energies with high confidence is expected to give an ac-
curate description of liquid water [32]. We have further
included results for the functionals SCAN and ωB97M-
V. These results were obtained using PySCF employing
the cc-pVQZ basis set. Tab. II shows that NXC-W01 is
superior to the other functionals tested.

In addition, we have tested the functional on the s66
dataset [33] to assess its transferability to heterogeneous
systems. Results shown in Supplementary Table III and
discussed in Supplementary Note 6 indicate that the
functional improves the overall treatment of hydrogen-
bonds lowering the average error in bonding distance

from 0.039(6)Å for PBE to 0.021(3)Å for NXC-W01.

Using our ML model as a potential instead of merely
adding an energy correction as proposed in earlier work
by the authors [18] and in related work [15], has the ad-
vantage that electron densities are self-consistent with
respect to the underlying functional. Self-consistency
makes the Hellmann-Feynman theorem [34] applicable,
allowing us to obtain accurate, energy-preserving forces
that can be used to study dynamical and statistical prop-
erties of a system.

It is commonly accepted that the accurate description
of liquid water necessitates the use of hybrid function-
als and the explicit treatment of dispersion forces and
nuclear quantum effects (NQEs) [35]. The latter is of-
ten achieved through path integral molecular dynamics
[36], the cost of which still prohibits its use in ab-initio
simulations of realistically sized systems. Testing our op-
timized functional on liquid water, we, therefore, bear in
mind that an exact agreement with experimental results
could only be achieved if NQEs were to be explicitly in-
cluded.

Born-Oppenheimer molecular dynamics simulations
were run for 96 water molecules in a periodic box at ex-
perimental density and 300 K using stochastic velocity
rescaling as implemented by the i-PI code [37]. We ob-
tained an initial configuration from a thermalized molec-
ular dynamics simulation of the same system run with
MB-pol. This configurations was then used together with
random initial velocities as starting point for a 20 ps MD
runs with time step 0.5 fs, using both PBE and NXC-
W01 as functionals. We discarded the first 5 ps and used
the remaining 15 ps for our analysis.

As MB-Pol has been shown to provide excellent agree-
ment with experimental results [11] in PIMD studies, the
quality of our model can be assessed by comparing to
MB-Pol classical molecular dynamics simulations at 300
K. We further include results from various other works
obtained with functionals that are considered superior
to PBE, namely the meta-GGA functional SCAN and
the range-separated hybrid functional with non-local in-
teractions ωB97M-V. The results for SCAN were taken
from work by Wiktor et al. [30] who conduct 15 ps long
simulations with a time step of 0.48 fs, performed in the
canonical NVT-ensemble at 300 K using the CP2K code
and a periodic box containing 64 water molecules. For
ωB97M-V, results by Yao et al. [31] were included, the
computational details being the same as in the case of
SCAN except for a total simulation time of 30 ps and
a time step of 1.5 fs. For radial distribution functions
(RDFs) other than oxygen-oxygen, only results by Wik-
tor et al. [30] were available.

Figure 5 shows excellent agreement between the RDFs
obtained with NXC-W01 and MB-pol. While both
SCAN and ωB97M-V show improvement with respect to
PBE, both functionals lead to an overstructured liquid.
This is in accordance with the insights presented in Tab.
II, as we would expect NXC-W01 to outperform the other
functionals based on its accuracy regarding many-body
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FIG. 5. Radial distribution functions (RDFs). The RDFs obtained from Born-Oppenheimer molecular dynamics simulations
of 96 water molecules in a periodic box at experimental density and 300 K using PBE and NXC-W01 as functionals are
compared to experimental results by Skinner et al. [28] and Soper [29] as well as MB-Pol results taken from Ref. [11] and Born
Oppenheimer MD simulations using SCAN by Wiktor et al. [30] and ωB97M-V by Yao et al. [31].

energies. While deviations with respect to x-ray diffrac-
tion experiments [28] and joint refinement of neutron and
x-ray data [29] can be observed, these can be largely ac-
credited to the lack of explicit treatment of NQEs. Quan-
tities that are are more robust to these effects such as the
shape of the first trough as well as the radial positions of
extrema in all RDFs are well reproduced.

We have also validated that NXC-W01 is capable of
accurately describing bond breaking situations in water,
which it was not explicitly trained for. Fig 6 shows the
coordinated proton transfer reaction in a water-hexamer
ring. A simultaneous 6-proton transfer path along the
H-bond direction between the six molecules in the ring is
discretized and the energy at each configuration is plotted
as a function of the proton transfer coordinate ν. None
of our training data involved dissociated configurations,
however NXC-W01 outperforms all other XC functionals
and closely reproduces CCSD(T) results. These type of
dissociative configurations are explored by ring polymer
beads in path integral molecular dynamics simulations of

liquid water[38], and cannot be accounted for with non
dissociative force fields.

Electronic densities

When trying to evaluate the quality of electron densi-
ties produced by NXC-W01, we are faced with the prob-
lem of comparing densities that were obtained with dif-
ferent methods and approximations.

In particular, coupled cluster densities were calculated
with PySCF[39], an all electron code that utilizes gaus-
sian basis sets and non-periodic boundary conditions. In
contrast, NeuralXC is implemented within SIESTA [19],
a periodic, pseudopotential DFT code that uses numeri-
cal atomic orbital basis sets. This limits the meaningful-
ness of a density comparison based on real-space grids.

We hence choose to compare the moments of the den-
sity distribution. These (dipole and quadrupole mo-
ments) have a direct physical interpretation and have
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FIG. 6. Coordinated proton transfer in a water hexamer ring.
The reaction coordinate is defined as ν = d(O−H)−d(O′−H),
where O,O′, where O,O′ are the two Oxygen atoms involved
in the H-bond and H is the transferred proton. Energy values
shown in inset correspond to barrier heights.

 
ρCCSD(T) - ρPBE ρNXC-W01 - ρPBE

0.015

0.010

0.005

0.000

0.005

0.010

0.015

FIG. 7. Electron density of water. Comparison of the dif-
ference in electron density between CCSD(T) and PBE and
NXC-W01 and PBE for a water molecule in its experimen-
tal equilibrium geometry. Two dimensional cuts either corre-
spond to high-symmetry planes or planes containing a signif-
icant number of atoms and are indicated by blue surfaces in
the molecule depictions adjacent to the density plots. Black
dots inside the density plots indicate the positions of in-plane
atoms. Atoms are color-coded with red corresponding to oxy-
gen and white to hydrogen. Color scale is in units of e·Bohr−3.

been used before to evaluate the quality of a given DFT
density [40]; moreover, they are accessible by experiment.
Table III shows the dipole and quadrupole moments, to-
gether with the spread of the valence electron density
distribution for a water molecule in the experimental
equilibrium geometry. Results evidence that NXC-W01
improves the moments of the density distrubtion. Partic-
ularly, the dipole moment error of PBE is reduced from
2% to 0.2% with NXC-W01.

Figure 7 shows the valence charge density changes with
respect to the fixed base line model for a water molecule

Exp. PBE NXC-W01 CCSD(T)
Dipole (D) 1.855 1.814 1.851 1.856

Quadrupole QT (D·Å) 2.565 2.488 2.494 2.505
〈r2〉 (D·Å) - -26.83 -26.45 -26.51

TABLE III. Moments of the electronic density of water. Cal-
culations were done for a molecule in its experimental equi-
librium geometry. Coupled cluster results were calculated
in an aug-cc-pVTZ basis, a doubly polarized quadruple zeta
basis was used for PBE and NXC-W01. The quadrupole
moment QT is defined as half the difference between the
largest and smallest eigenvalue of the traceless quadrupole
tensor QT = 1/2(qmax − qmin). It is invariant to rotations
and uniquely defines the entire quadrupole tensor for a water
molecule in its equilibrium geometry [41]. The spread of the
valence electron density is defined as 〈r2〉 =

∫
r
r2ρval.

in its experimental geometry. Additional density compar-
isons for other molecules and functionals are provided in
Supplementary Figure 6.

The plotted density cuts show that there is qualita-
tive agreement between the two method mostly along
the OH bond where both methods localize more charge
than PBE. Closer to the oxygen core, the change in den-
sity induced by NXC-W01 exhibits a nodal shape that is
missing in the exact counterpart.

To understand the source of these deviations, it is in-
structive to revisit Equation (): In DFT, the ground
state density is uniquely determined by the potential V .
In the case of NeuralXC, VML is closely related to the
derivatives of the atomic neural networks with respect to
their input features. In regions of feature space where
data is abundant, fitting the model to reference energies
will give a valid treatment of these derivatives (assum-
ing that the neural network is sufficiently smooth, which
can be achieved with regularization techniques). How-
ever in data-sparse regions, these derivatives will become
less reliable.

Returning to the example of water and Figure 7, it
becomes clear why NXC-W01 achieves a satisfying trea-
ment of the OH-bonds, as density variations within that
area are well represented in the training data. As the den-
sity close to the oxygen core is less susceptible to molecu-
lar deformations, especially when using pseudopotentials,
NXC-W01 has less data to draw upon in this region.

The question remains whether a machine learned XC
functional of the form of NeuralXC can be brought closer
to an exact functional. One way to improve in this regard
is to incorporate information about the exact potential
during the training process. This potential can in princi-
ple be calculated starting from the exact density obtained
from a fully correlated many body wave function. While
we aim to explore this in more detail in future work,
we provide a proof of concept example in Supplementary
Note 7, showing how the density error of PBE can be
decreased by up to two orders of magnitude for a set of
H2 molecules .
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DISCUSSION

We have developed a supervised ML method termed
NeuralXC that lifts the accuracy of Kohn-Sham density
functional calculations at a GGA level towards that of
coupled-cluster theory calculations. We have shown that
using NeuralXC, it is possible to create specialized func-
tionals that are highly accurate when used in systems suf-
ficiently similar to their training data, while not degrad-
ing the overall accuracy of their baseline method (and
in some cases improving it) when used far outside their
training domain.

Throughout this work we have tried to illustrate sev-
eral key aspects that, we believe, contribute to the suc-
cess of a ML method.

Given the limited availability of highly accurate ref-
erence data, it is crucial that the proposed method is
data-efficient. We have shown that desired accuracies for
a variety of systems can be reached with small to mod-
erately sized training sets.

Another cornerstone of a successful ML model is its
transferability, facilitating model creation itself. As Neu-
ralXC functionals generalize across chemical environ-
ments, the need to create a new reference dataset and re-
train a new model for each system of interest decreases.
We have shown this in the case of alkanes, where a model
trained on ethane and propane was still valid for n-butane
and isobutane structures showing an MAE in total energy
prediction of 6.6 and 6.1 meV respectively. While show-
ing promising results, these experiments also laid bare
the shortcomings of our method, as the functional only
proved limited capability of treating carbon hybridiza-
tions other than the one it was trained on.

In comparison to other models presented in this work,
which were used as case-studies to highlight certain
strengths and weaknesses of our method, NXC-W01
stands out as a versatile functional with promising future
applications. Beyond reproducing pair-correlation func-
tions close to experimental results, it is capable of treat-
ing bond-breaking, opening the path to studying proton
transfer processes in liquid water at a highly accurate
level. Further, we have shown that beyond water, the
model is capable of correcting the hydrogen bond length
for a variety of systems contained in the s66 dataset. For
systems where NXC-W01 does not provide an improve-
ment it was shown that it does not significantly degrade
the accuracy of its baseline functional, PBE. This sug-
gests that NXC-W01 can be used in scenarios where the
correct treatment of water-water interactions is crucial
and PBE is known to have sufficient accuracy for the re-
maining interactions. For example, it is a suitable model
to treat hybrid systems like aqueous interfaces, or solu-
tions, where only the water description is highly sensitive
to the quality of the functional.

All these insights will guide further development of our
method, the ultimate goal being the design of a universal
functional that is equally valid and highly accurate for a
wide variety of systems both from the realm of molecules

and solids. The success of this endeavor will depend cru-
cially on the availability of diverse and accurate training
data.

Furthermore, while this has not always been done in
the past [42], density functionals should be judged by
their ability to reproduce both energetic benchmarks as
well as reference electron densities. This work has put
an emphasis on energetic properties, but we have shown
that by correcting the total baseline energy NeuralXC
also induces density changes that bring the density closer
to the exact density. However, as these changes are rel-
atively small, future research will need to address how
reference potentials can be directly incorporated in the
training procedure to enable a more guided approach to-
wards functionals that are accurate regarding both en-
ergy and density.

NeuralXC opens up a new path to developing
exchange-correlation functionals for KS-DFT calcula-
tions. As our method only introduces a linearly scaling
overhead to the underlying baseline functional (see Sup-
plementary Note 4), it is especially attractive for sim-
ulations of large systems for which explicitly correlated
wave-function methods are still too expensive. Beyond
creating accurate functionals for KS-DFT calculations,
we see possible applications in orbital-free DFT, where
NeuralXC could be used to develop kinetic energy func-
tionals.

Finally, the trade-off between accuracy and cost that
our method entails needs to be carefully assessed. This
trade-off depends both on the baseline functional and
the basis sets used (as well as other variables). While
being somewhat ad-hoc and less physically motivated, we
have previously shown [18] that ML density functionals
can also be used to correct for basis set errors. Building
a NeuralXC functional on top of a cheap baseline such
as the local density approximation [43], together with a
minimal basis set, could make our method a competitive
alternative to tight-binding DFT.

METHODS

Training

The models were trained on self-consistent densities
produced with the baseline functional (PBE [21]). Given
a dataset containing triplets of the baseline total energies

E
(i)
base, reference total energies E

(i)
ref and baseline densities

ρ(i), the loss function is defined as

L =

N∑
i

(E
(i)
ref − ENXC[ρ(i)])2 (11)

=

N∑
i

((E
(i)
ref − E

(i)
base)− EML[ρ(i)])2, (12)

where the parameters inside the machine learned func-
tional EML are to be optimized to minimize L.
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Before passing the symmetrized descriptors dnl
through the neural network, three additional preprocess-
ing steps were employed. First, a variance filter was
used, disregarding all features whose variance across the
training set was below a threshold value equal to 10−10,
effectively de-noising the dataset. Second, all features
are scaled so that their values are normally distributed
across the training set with zero mean and variance one,
a step common in machine learning to ensure fast con-
vergence of the optimization algorithm used to train the
neural network. As a final step, the features were pro-
jected onto their principal components [44], only keeping
enough components so that an explained (normalized)
variance of γ was achieved, with values of γ ranging from
0.95 to 1. If γ is smaller than one, this step has a regu-
larizing effect decreasing the risk of overfitting.

All models were implemented in Tensorflow [45] and
trained using the Adam [46] optimizer with training rate
α = 0.001 and decay rates β1 = 0.9 and β2 = 0.999 and
the sigmoid function was chosen as activation. Hyper-
parameters such as γ, the learning rate, l2-regularization
were determined through k-fold cross-validation. This
involves splitting the training data into k random folds,
i.e. equally sized parts, and picking the hyperparam-
eters that produce the smallest average generalization
error on a single fold if trained on the remaining ones.
Once these hyperparameters are determined, the model
is trained one final time on the entire training set. We
used k = 5 for training sets with less than 100 data points
and k = 3 for all others. Supplementary Note 3 discusses
how a model architecture could in principle be optimized
for maximum transferability.

The number of nodes per hidden layer was also
treated as a hyperparameter and optimized through
cross-validation. The final depth (i.e., the number of
hidden layers) for each network was not explicitly chosen
as it was determined by the convergence of the iterative
training procedure described below. A summary of the
resulting network architectures is given in Supplementary
Table I.

By altering the xc-functional, the self-consistent elec-
tron densities change as well. This fact causes the actual
accuracy of the ML functional, defined as the accuracy of
the energies and forces obtained by self-consistent calcu-
lations with the modified functional, to be lower than the
accuracy obtained during the fitting procedure. To rem-
edy this, we employed what we call iterative training:
The electron densities and corrected energies obtained

with the first iteration of the ML functional E
(1)
ML are

used to train a new iteration which is then in turn used
to calculate new densities. This procedure is continued
until the accuracy of the obtained functional remains un-
changed across two subsequent iterations. The the neural
network used in iteration n + 1 is obtained by freezing
the hidden layers of iteration n and adding a new hid-
den layer to the network that is then optimized on the
nth iteration of the training densities. Typical numbers
of iterations (and final number of hidden layers) ranged

from two to five. This technique is reminiscent of a pro-
cedure commonly known as greedy layer-wise training in
the deep learning community [47], although with a differ-
ent goal set. A more detailed discussion of the training
algorithm can be found in the Supplementary Methods.

DFT calculations

The baseline calculations for all of the datasets above
were conducted with SIESTA [19] using the PBE [21]
exchange-correlation functional with norm-conserving
pseudopotentials, a real-space grid cutoff of 400 Ry and
a cubic unit cell with lattice constant 30 Å unless other-
wise indicated. A doubly-polarized quadruple zeta basis
set was used for the water clusters and the s66x8 dataset
calculations. All other structures were computed with a
polarized double zeta basis. Molecular dynamics simula-
tions were conducted using an optimized polarized double
zeta basis[48] and a real space grid cutoff of 450 Ry.

ML basis sets

The ML basis sets were hand-picked using a combina-
tion of physical intuition (to set reasonable lower and up-
per bounds for the parameters) and cross-validation. The
basis set used for MOB-ML was optimized for transfer-
ability. This was achieved by training models on methane
and ethane and determining which basis parameters pro-
duce the best extrapolation (lowest RMSE) to propane.
The basis sets used are listed in Supplementary Table I.

CODE AVAILABILITY

The implementation of NeuralXC as well as ex-
amples on how to train and deploy NeuralXC func-
tionals are available in zenodo with the identifier
doi:10.5281/zenodo.3761613 [49].

DATA AVAILABILITY

Data in the form of molecule geometries along with
their associated reference energies, as well as input files
and scripts needed to reproduce the results presented
in this manuscript are bundled with our initial release
of NeuralXC and available in zenodo under the inden-
tifier doi:10.5281/zenodo.3761613 [49]. Additional data
related to this paper may be requested from the authors.
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